Showing posts with label disease. Show all posts
Showing posts with label disease. Show all posts

Thursday, August 12, 2010

Can a Statin Neutralize the Cardiovascular Risk of Unhealthy Dietary Choices?

The title of this post is the exact title of a recent editorial in the American Journal of Cardiology (1). Investigators calculated the "risk for cardiovascular disease associated with the total fat and trans fat content of fast foods", and compared it to the "risk decrease provided by daily statin consumption". Here's what they found:
The risk reduction associated with the daily consumption of most statins, with the exception of pravastatin, is more powerful than the risk increase caused by the daily extra fat intake associated with a 7-oz hamburger (Quarter Pounder®) with cheese and a small milkshake. In conclusion, statin therapy can neutralize the cardiovascular risk caused by harmful diet choices.

Routine accessibility of statins in establishments providing unhealthy food might be a rational modern means to offset the cardiovascular risk. Fast food outlets already offer free condiments to supplement meals. A free statin-containing accompaniment would offer cardiovascular benefits, opposite to the effects of equally available salt, sugar, and high-fat condiments. Although no substitute for systematic lifestyle improvements, including healthy diet, regular exercise, weight loss, and smoking cessation, complimentary statin packets would add, at little cost, 1 positive choice to a panoply of negative ones.
Wow. Later in the editorial, they recommend "a new and protective packet, “MacStatin,” which could be sprinkled onto a Quarter Pounder or into a milkshake." I'm not making this up!

I can't be sure, but I think there's a pretty good chance the authors were being facetious in this editorial, in which case I think a) it's hilarious, b) most people aren't going to get the joke. If they are joking, the editorial is designed to shine a light on the sad state of mainstream preventive healthcare. Rather than trying to educate people and change the deadly industrial food system, which is at the root of a constellation of health problems, many people think it's acceptable to partially correct one health risk by tinkering with the human metabolism using drugs. To be fair, most people aren't willing to change their diet and lifestyle habits (and perhaps for some it's even too late), so frustrated physicians prescribe drugs to mitigate the risk. I accept that. But if our society is really committed to its own health and well-being, we'll remove the artificial incentives that favor industrial food, and educate children from a young age on how to eat well.

I think one of the main challenges we face is that our current system is immensely lucrative for powerful financial interests. Industrial agriculture lines the pockets of a few large farmers and executives (while smaller farmers go broke and get bought out), industrial food processing concentrates profit among a handful of mega-manufacturers, and then people who are made ill by the resulting food spend an exorbitant amount of money on increasingly sophisticated (and expensive) healthcare. It's a system that effectively milks US citizens for a huge amount of money, and keeps the economy rolling at the expense of the average person's well-being. All of these groups have powerful lobbies that ensure the continuity of the current system. Litigation isn't the main reason our healthcare is so expensive in the US; high levels of chronic disease, expensive new technology, a "kitchen sink" treatment approach, and inefficient private companies are the real reasons.

If the editorial is serious, there are so many things wrong with it I don't even know where to begin. Here are a few problems:
  1. They assume the risk of heart attack conveyed by eating fast food is due to its total and trans fat content, which is simplistic. To support that supposition, they cite one study: the Health Professionals Follow-up Study (2). This is one of the best diet-health observational studies conducted to date. The authors of the editorial appear not to have read the study carefully, because it found no association between total or saturated fat intake and heart attack risk, when adjusted for confounding variables. The number they quoted (relative risk = 1.23) was before adjustment for fiber intake (relative risk = 1.02 after adjustment), and in any case, it was not statistically significant even before adjustment. How did that get past peer review? Answer: reviewers aren't critical of hypotheses they like.
  2. Statins mostly work in middle-aged men, and reduce the risk of heart attack by about one quarter. The authors excluded several recent unsupportive trials from their analysis. Dr. Michel de Lorgeril reviewed these trials recently (3). For these reasons, adding a statin to fast food would probably have a negligible effect on the heart attack risk of the general population.
  3. "Statins rarely cause negative side effects." BS. Of the half dozen people I know who have gone on statins, all of them have had some kind of negative side effect, two of them unpleasant enough that they discontinued treatment against their doctor's wishes. Several of them who remained on statins are unlikely to benefit because of their demographic, yet they remain on statins on their doctors' advice.
  4. Industrial food is probably the main contributor to heart attack risk. Cultures that don't eat industrial food are almost totally free of heart attacks, as demonstrated by a variety of high-quality studies (4, 5, 6, 7, 8, 9). No drug can replicate that, not even close.
I have an alternative proposal. Rather than giving people statins along with their Big Mac, why don't we change the incentive structure that artificially favors the Big Mac, french fries and soft drink? If it weren't for corn, soybean and wheat subsidies, fast food wouldn't be so cheap. Neither would any other processed food. Fresh, whole food would be price competitive with industrial food, particularly if we applied the grain subsidies to more wholesome foods. Grass-fed beef and dairy would cost the same as grain-fed. I'm no economist, so I don't know how realistic this really is. However, my central point still stands: we can change the incentive structure so that it no longer artificially favors industrial food. That will require that the American public get fed up and finally butt heads with special interest groups.

Thursday, July 8, 2010

China Study Problems of Interpretation

The China study was an observational study that collected a massive amount of information about diet and health in 65 different rural regions of China. It's been popularized by Dr. T. Colin Campbell, who has argued that the study shows that plant foods are generally superior to animal foods for health, and even a small amount of animal food is harmful. Campbell's book has been at the center of the strict vegetarian (vegan) movement since its publication.

Richard from Free the Animal just passed on some information that many of you may find interesting. A woman named Denise Minger recently published a series of posts on the China study. She looked up the raw data and applied statistics to it. It's the most thorough review of the data I've seen so far. She raises some points about Campbell's interpretation of the data that are frankly disturbing. As I like to say, the problem is usually not in the data-- it's in the interpretation.

One of the things Minger points out is that wheat intake had a massive correlation with coronary heart disease-- one of the strongest correlations the investigators found. Is that because wheat causes CHD, or is it because wheat eating regions tend to be further North and thus have worse vitamin D status? I don't know, but it's an interesting observation nevertheless. Check out Denise Minger's posts... if you have the stamina:

The China Study: Fact or Fallacy

Also, see posts on the China study by Richard Nikoley, Chris Masterjohn and Anthony Colpo:

T. Colin Campbell's the China Study
The Truth About the China Study
The China Study: More Vegan Nonsense

And my previous post on the association between wheat intake and obesity in China:

Wheat in China

Saturday, July 3, 2010

Tropical Plant Fats: Palm Oil

A Fatal Case of Nutritionism

The concept of 'nutritionism' was developed by Dr. Gyorgy Scrinis and popularized by the food writer Michael Pollan. It states that the health value of a food can be guessed by the sum of the nutrients it contains. Pollan argues, I think rightfully, that nutritionism is a reductionist philosophy that assumes we know more about food composition and the human body than we actually do. You can find varying degrees of this philosophy in most mainstream discussions of diet and health*.

One conspicuous way nutritionism manifests is in the idea that saturated fat is harmful. Any fat rich in saturated fatty acids is typically assumed to be unhealthy, regardless of its other constituents. There is also apparently no need to directly test that assumption, or even to look through the literature to see if the assumption has already been tested. In this manner, 'saturated' tropical plant fats such as palm oil and coconut oil have been labeled unhealthy, despite essentially no direct evidence that they're harmful. As we'll see, there is actually quite a bit of evidence, both indirect and direct, that their unrefined forms are not harmful and perhaps even beneficial.

Palm Oil and Heart Disease

Long-time readers may recall a post I wrote a while back titled Ischemic Heart Attacks: Disease of Civilization (1). I described a study from 1964 in which investigators looked for signs of heart attacks in thousands of consecutive autopsies in the US and Africa, among other places. They found virtually none in hearts from Nigeria and Uganda (3 non-fatal among more than 4,500 hearts), while Americans of the same age had very high rates (up to 1/3 of hearts).

What do they eat in Nigeria? Typical Nigerian food involves home-processed grains, starchy root vegetables, beans, fruit, vegetables, peanuts, red palm oil, and a bit of dairy, fish and meat**. The oil palm Elaeis guineensis originated in West Africa and remains one of the main dietary fats throughout the region.

To extract the oil, palm fruit are steamed, and the oily flesh is removed and pressed. It's similar to olive oil in that it is extracted gently from an oil-rich fruit, rather than harshly from an oil-poor seed (e.g., corn or soy oil). The oil that results is deep red and is perhaps the most nutrient-rich fat on the planet. The red color comes from carotenes, but red palm oil also contains a large amount of vitamin E (mostly tocotrienols), vitamin K1, coenzyme Q10 and assorted other fat-soluble constituents. This adds up to a very high concentration of fat-soluble antioxidants, which are needed to protect the fat from rancidity in hot and sunny West Africa. Some of these make it into the body when it's ingested, where they appear to protect the body's own fats from oxidation.

Mainstream nutrition authorities state that palm oil should be avoided due to the fact that it's approximately half saturated. This is actually one of the main reasons palm oil was replaced by hydrogenated seed oils in the processed food industry. Saturated fat raises blood cholesterol, which increases the risk of heart disease. Doesn't it? Let's see what the studies have to say.

Most of the studies were done using refined palm oil, unfortunately. Besides only being relevant to processed foods, this method also introduces a new variable because palm oil can be refined and oxidized to varying degrees. However, a few studies were done with red palm oil, and one even compared it to refined palm oil. Dr. Suzanna Scholtz and colleagues put 59 volunteers on diets predominating in sunflower oil, refined palm oil or red palm oil for 4 weeks. LDL cholesterol was not different between the sunflower oil and red palm oil groups, however the red palm oil group saw a significant increase in HDL. LDL and HDL both increased in the refined palm oil group relative to the sunflower oil group (2).

Although the evidence is conflicting, most studies have not been able to replicate the finding that refined palm oil increases LDL relative to less saturated oils (3, 4). This is consistent with studies in a variety of species showing that saturated fat generally doesn't raise LDL compared to monounsaturated fat in the long term, unless a large amount of purified cholesterol is added to the diet (5).

Investigators have also explored the ability of palm oil to promote atherosclerosis, or hardening and thickening of the arteries, in animals. Not only does palm oil not promote atherosclerosis relative to monounsaturated fats (e.g., olive oil), but in its unrefined state it actually protects against atherosclerosis (6, 7). A study in humans hinted at a possible explanation: compared to a monounsaturated oil***, palm oil greatly reduced oxidized LDL (8). As a matter of fact, I've never seen a dietary intervention reduce oxLDL to that degree (69%). oxLDL is a major risk factor for cardiovascular disease, and a much better predictor of risk than the typically measured LDL cholesterol (9). The paper didn't state whether or not the palm oil was refined. I suspect it was lightly refined, but still rich in vitamin E and CoQ10.

As I discussed in my recent interview with Jimmy Moore, atherosclerosis is only one factor in heart attack risk (10). Several other factors are also major determinants of risk: clotting tendency, plaque stability, and susceptibility to arrhythmia. Another factor that I haven't discussed is how resistant the heart muscle is to hypoxia, or loss of oxygen. If the coronary arteries are temporarily blocked-- a frequent occurrence in modern people-- the heart muscle can be damaged. Dietary factors determine the degree of damage that results. For example, in rodents, nitrites derived from green vegetables protect the heart from hypoxia damage (11). It turns out that red palm oil is also protective (12, 13). Red palm oil also protects against high blood pressure in rats, an effect attributed to its ability to reduce oxidative stress (14, 15).

Together, the evidence suggests that red palm oil does not contribute to heart disease risk, and in fact is likely to be protective. The benefits of red palm oil probably come mostly from its minor constituents, i.e. the substances besides its fatty acids. Several studies have shown that a red palm oil extract called palmvitee lowers serum lipids in humans (16, 17). The minor constituents are precisely what are removed during the refining process.

Palm Oil and the Immune System

Red palm oil also has beneficial effects on the immune system in rodents. It protects against bacterial infection when compared with soybean oil (18). It also protects against certain cancers, compared to other oils (19, 20). This may be in part due to its lower content of omega-6 linoleic acid (roughly 10%), and minor constituents.

The Verdict

Yet again, nutritionism has gotten itself into trouble by underestimating the biological complexity of a whole food. Rather than being harmful to human health, red palm oil, an ancient and delicious food, is likely to be protective. It's also one of the cheapest oils available worldwide, due to the oil palm's high productivity. It has a good shelf life and does not require refrigeration. Its strong, savory flavor goes well in stews, particularly meat stews. It isn't available in most grocery stores, but you can find it on the internet. Make sure not to confuse it with refined palm oil or palm kernel oil.


* The approach that Pollan and I favor is a simpler, more empirical one: eat foods that have successfully sustained healthy cultures.

** Some Nigerians are also pastoralists that subsist primarily on dairy.

*** High oleic sunflower oil, from a type of sunflower bred to be high in monounsaturated fat and low in linoleic acid. I think it's probably among the least harmful refined oils. I use it sometimes to make mayonnaise. It's often available in grocery stores, just check the label.

Thursday, June 24, 2010

Interview with Jimmy Moore

About two months ago, I did an interview with Jimmy Moore of the Livin' la Vida Low Carb internet empire. I hardly remember what we talked about, but I think it went well. I enjoyed Jimmy's pleasant and open-minded attitude. Head over to Jimmy's website and listen to the interview here.

I do recall making at least one mistake. When discussing heart attacks,I said "atrial fibrillation" when I meant "ventricular fibrillation".

Thursday, June 10, 2010

Nitrate: a Protective Factor in Leafy Greens

Cancer Link and Food Sources

Nitrate (NO3) is a molecule that has received a lot of bad press over the years. It was initially thought to promote digestive cancers, in part due to its ability to form carcinogens in the digestive tract. As it's used as a preservative in processed meats, and there is a link between processed meats and gastric cancer (1), nitrate was viewed with suspicion and a number of countries imposed strict limits on its use as a food additive.

But what if I told you that by far the greatest source of nitrate in the modern diet isn't processed meat-- but vegetables, particularly leafy greens (2)? And that the evidence specifically linking nitrate consumption to gastric cancer has largely failed to materialize? For example, one study found no difference in the incidence of gastric cancer between nitrate fertilizer plant workers and the general population (3). Most other studies in animals and humans have not supported the hypothesis that nitrate itself is carcinogenic (4, 5, 6). This, combined with recent findings on nitrate biology, has the experts singing a different tune in the last few years.

A New Example of Human Symbiosis

In 2003, Dr. K. Cosby and colleagues showed that nitrite (NO2; not the same as nitrate) dilates blood vessels in humans when infused into the blood (7). Investigators subsequently uncovered an amazing new example of human-bacteria symbiosis: dietary nitrate (NO3) is absorbed from the gut into the bloodstream and picked up by the salivary glands. It's then secreted into saliva, where oral bacteria use it as an energy source, converting it to nitrite (NO2). After swallowing, the nitrite is reabsorbed into the bloodstream (8). Humans and oral bacteria may have co-evolved to take advantage of this process. Antibacterial mouthwash prevents it.

Nitrate Protects the Cardiovascular System

In 2008, Dr. Andrew J. Webb and colleagues showed that nitrate in the form of 1/2 liter of beet juice (equivalent in volume to about 1.5 soda cans) substantially lowers blood pressure in healthy volunteers for over 24 hours. It also preserved blood vessel performance after brief oxygen deprivation, and reduced the tendency of the blood to clot (9). These are all changes that one would expect to protect against cardiovascular disease. Another group showed that in monkeys, the ability of nitrite to lower blood pressure did not diminish after two weeks, showing that the animals did not develop a tolerance to it on this timescale (10).

Subsequent studies showed that dietary nitrite reduces blood vessel dysfunction and inflammation (CRP) in cholesterol-fed mice (11). Low doses of nitrite also dramatically reduce tissue death in the hearts of mice exposed to conditions mimicking a heart attack, as well as protecting other tissues against oxygen deprivation damage (12). The doses used in this study were the equivalent of a human eating a large serving (100 g; roughly 1/4 lb) of lettuce or spinach.

Mechanism

Nitrite is thought to protect the cardiovascular system by serving as a precursor for nitric oxide (NO), one of the most potent anti-inflammatory and blood vessel-dilating compounds in the body (13). A decrease in blood vessel nitric oxide is probably one of the mechanisms of diet-induced atherosclerosis and increased clotting tendency, and it is likely an early consequence of eating a poor diet (14).

The Long View

Leafy greens were one of the "protective foods" emphasized by the nutrition giant Sir Edward Mellanby (15), along with eggs and high-quality full-fat dairy. There are many reasons to believe greens are an excellent contribution to the human diet, and what researchers have recently learned about nitrate biology certainly reinforces that notion. Leafy greens may be particularly useful for the prevention and reversal of cardiovascular disease, but are likely to have positive effects on other organ systems both in health and disease. It's ironic that a molecule suspected to be the harmful factor in processed meats is turning out to be one of the major protective factors in vegetables.

Saturday, May 29, 2010

Does Red Wine Protect the Cardiovascular System?

The 'French paradox' rears its ugly head again. The reasoning goes something like this: French people eat more saturated animal fat than any other affluent nation, and have the second-lowest rate of coronary heart disease (only after Japan, which has a much higher stroke rate than France). French people drink red wine. Therefore, red wine must be protecting them against the artery-clogging yogurt, beef and butter.

The latest study to fall into this myth was published in the AJCN recently (1). Investigators showed that 1/3 bottle of red wine per day for 21 days increased blood flow in forearm vessels of healthy volunteers, which they interpreted as "enhanced vascular endothelial function"*. The novel finding in this paper is that red wine consumption increases the migration of certain cells into blood vessels that are thought to maintain and repair the vessels. There were no control groups for comparison, neither abstainers nor a group drinking a different type of alcohol.

The investigators then went on to speculate that the various antioxidant polyphenols in red wine, such as the trendy molecule resveratrol, could be involved. Even though you have to give animals 500 bottles' worth of resveratrol per day to see any effect. But there's another little problem with this hypothesis...

Ethanol-- plain old alcohol. You could drink a 40 oz bottle of malt liquor every night and it would probably do the exact same thing.

No matter what the source, alcohol consumption is associated with a lower risk of cardiovascular disease out to about 3-4 drinks per day, after which the risk goes back up (2, 3)**. The association is not trivial-- up to a 62% lower risk associated with alcohol use. Controlled trials have shown that alcohol, regardless of the source, increases HDL cholesterol and reduces the tendency to clot (4).

Should we all start downing three drinks a day? Not so fast. Although alcohol does probably decrease heart attack risk, the effect on total mortality is equivocal. That's because it increases the risk of cancers and accidents. Alcohol is a drug, and my opinion is that like all drugs, overall it will not benefit the health of a person with an otherwise good diet and lifestyle. That being said, it's enjoyable, so I have no problem with drinking it in moderation. Just don't think you're doing it for your health.

So does red wine decrease the risk of having a heart attack? Yes, just as effectively as malt liquor. It's not the antioxidants and resveratrol, it's the ethanol. The reason the French avoid heart attacks is not because of some fancy compound in their wine that protects them from a high saturated fat intake. It's because they have preserved their diet traditions to a greater degree than most industrialized nations.

I do think it's interesting to speculate about why alcohol (probably) reduces heart attack risk. As far as I know, the mechanism is unknown. Could it be because it relaxes us? I'm going to ponder that over a glass of whiskey...


* It may well represent an improvement of endothelial function, but that's an assumption on the part of the investigators. It belongs in the discussion section, if anywhere, and not in the results section.

** The first study is really interesting. For once, I see no evidence of "healthy user bias". Rates of healthy behaviors were virtually identical across quintiles of alcohol intake. This gives me a much higher degree of confidence in the results.

Tuesday, May 25, 2010

Sweet Potatoes

We can measure the nutrient and toxin content of a food, and debate the health effects of each of its constituents until we're out of breath. But in the end, we still won't have a very accurate prediction of the health effects of that food. The question we need to answer is this one: has this food sustained healthy traditional cultures?

I'm currently reading a great book edited by Drs. Hugh Trowell and Denis Burkitt, titled Western Diseases: Their Emergence and Prevention. It's a compilation of chapters describing the diet and health of traditional populations around the world as they modernize.

The book contains a chapter on Papua New Guinea highlanders. Here's a description of their diet:
A diet survey was undertaken involving 90 subjects, in which all food consumed by each individual was weighed over a period of seven consecutive days. Sweet potato supplied over 90 percent of their total food intake, while non-tuberous vegetables accounted for less than 5 percent of the food consumed and the intake of meat was negligible... Extensive herds of pigs are maintained and, during exchange ceremonies, large amounts of pork are consumed.
They ate no salt. Their calories were almost entirely supplied by sweet potatoes, with occasional feasts on pork.

How was their health? Like many non-industrial societies, they had a high infant/child mortality rate, such that 43 percent of children died before growing old enough to marry. Surprisingly, protein deficiency was rare. No obvious malnutrition was observed in this population, although iodine-deficiency cretinism occurs in some highlands populations:
Young adults were well built and physically fit and had normal levels of haemoglobin and serum albumin. Further, adult females showed no evidence of malnutrition in spite of the demands by repeated cycles of pregnancy and lactation. On the basis of American standards (Society of Actuaries, 1959), both sexes were close to 100 percent standard weight in their twenties.
The Harvard Pack Test carried out on 152 consecutive subjects demonstrated a high level of physical fitness which was maintained well into middle-age. Use of a bicycle ergometer gave an estimated maximum oxygen uptake of 45.2 ml per kilogram per minute and thus confirmed the high level of cardiopulmonary fitness in this group.
Body weight decreased with age, which is typical of many non-industrial cultures and reflects declining muscle mass but continued leanness.

There was no evidence of coronary heart disease or diabetes. Average blood pressure was on the high side, but did not increase with age. Investigators administered 100 gram glucose tolerance tests and only 3.8 percent of the population had glucose readings above 160 mg/dL, compared to 21 percent of Americans. A study of 7,512 Papuans from several regions with minimal European contact indicated a diabetes prevalence of 0.1 percent, a strikingly low rate. For comparison, in 2007, 10.7 percent of American adults had diabetes (1).

I'm not claiming it's optimal to eat nothing but sweet potatoes. But this is the strongest evidence we're going to come by that sweet potatoes can be eaten in quantity as part of a healthy diet. However, I wish I knew more about the varieties this group ate. Sweet potatoes aren't necessarily sweet. Caribbean 'boniato' sweet potatoes are dry, starchy and off-white. In the US, I prefer the yellow sweet potatoes to the orange variety of sweet potato labeled 'yams', because the former are starchier and less sweet. If I could get my hands on locally grown boniatos here, I'd eat those, but boniatos are decidedly tropical.

Instead, I eat potatoes, but I'm reluctant to recommend them whole-heartedly because I don't know enough about the traditional cultures that consumed them. I believe there are some low-CHD, low-obesity African populations that eat potatoes as part of a starch-based diet, but I haven't looked into it closely enough to make any broad statements. Potatoes have some nutritional advantages over sweet potatoes (higher protein content, better amino acid profile), but also some disadvantages (lower fiber, lower in most micronutrients, toxic glycoalkaloids).

Saturday, May 22, 2010

Pastured Dairy may Prevent Heart Attacks

Not all dairy is created equal. Dairy from grain-fed and pasture-fed cows differs in a number of ways. Pastured dairy contains more fat-soluble nutrients such as vitamin K2, vitamin A, vitamin E, carotenes and omega-3 fatty acids. It also contains more conjugated linoleic acid, a fat-soluble molecule that has been under intense study due to its ability to inhibit obesity and cancer in animals. The findings in human supplementation trials have been mixed, some confirming the animal studies and others not. In feeding experiments in cows, Dr. T. R. Dhiman and colleagues found the following (1):
Cows grazing pasture and receiving no supplemental feed had 500% more conjugated linoleic acid in milk fat than cows fed typical dairy diets.
Fat from ruminants such as cows, sheep and goats is the main source of CLA in the human diet. CLA is fat-soluble. Therefore, skim milk doesn't contain any. It's also present in human body fat in proportion to dietary intake. This can come from dairy or flesh.

In a recent article from the AJCN, Dr. Liesbeth Smit and colleagues examined the level of CLA in the body fat of Costa Rican adults who had suffered a heart attack, and compared it to another group who had not (a case-control study, for the aficionados). People with the highest level of CLA in their body fat were 49% less likely to have had a heart attack, compared to those with the lowest level (2).

Since dairy was the main source of CLA in this population, the association between CLA and heart attack risk is inextricable from the other components in pastured dairy fat. In other words, CLA is simply a marker of pastured dairy fat intake in this population, and the (possible) benefit could just as easily have come from vitamin K2 or something else in the fat.

This study isn't the first one to suggest that pastured dairy fat may be uniquely protective. The Rotterdam and EPIC studies found that a higher vitamin K2 intake is associated with a lower risk of heart attack, cancer and overall mortality (3, 4, 5). In the 1940s, Dr. Weston Price estimated that pastured dairy contains up to 50 times more vitamin K2 than grain-fed dairy. He summarized his findings in the classic book Nutrition and Physical Degeneration. This finding has not been repeated in recent times, but I have a little hunch that may change soon...

Vitamin K2
Cardiovascular Disease and Vitamin K2
Can Vitamin K2 Reverse Arterial Calcification?

Tuesday, May 18, 2010

Intervew with Chris Kresser of The Healthy Skeptic

Last week, I did an audio interview with Chris Kresser of The Healthy Skeptic, on the topic of obesity. We put some preparation into it, and I think it's my best interview yet. Chris was a gracious host. We covered some interesting ground, including (list copied from Chris's post):
  • The little known causes of the obesity epidemic
  • Why the common weight loss advice to “eat less and exercise more” isn’t effective
  • The long-term results of various weight loss diets (low-carb, low-fat, etc.)
  • The body-fat setpoint and its relevance to weight regulation
  • The importance of gut flora in weight regulation
  • The role of industrial seed oils in the obesity epidemic
  • Obesity as immunological and inflammatory disease
  • Strategies for preventing weight gain and promoting weight loss
Some of the information we discussed is not yet available on my blog. You can listen to the interview through Chris's post here.

Tuesday, May 11, 2010

Saturated Fat and Insulin Sensitivity, Again

A new study was recently published exploring the effect of diet composition on insulin sensitivity and other factors in humans (1). 29 men with metabolic syndrome-- including abdominal obesity, low HDL, high blood pressure, high triglycerides, and high fasting glucose-- were fed one of four diets for 12 weeks:
  1. A diet containing 38% fat: 16% saturated (SFA), 12% monounsaturated (MUFA) and 6% polyunsaturated (PUFA)
  2. A diet containing 38% fat: 8% SFA, 20% MUFA and 6% PUFA
  3. A diet high in unrefined carbohydrate, containing 28% fat (8% SFA, 11% MUFA and 6% PUFA)
  4. A diet high in unrefined carbohydrate, containing 28% fat (8% SFA, 11% MUFA and 6% PUFA) and an omega-3 supplement (1.24 g/day EPA and DHA)
After 12 weeks, insulin sensitivity, fasting glucose, glucose tolerance, and blood pressure did not change significantly in any of the four groups. This is consistent with the majority of the studies that have examined this question, although somehow the idea persists that saturated fat impairs insulin sensitivity. I discussed this in more detail in a recent post (2).

The paper that's typically cited by people who wish to defend the idea that saturated fat impairs insulin sensitivity is the KANWU study (3). In this study, investigators found no significant difference in insulin sensitivity between volunteers fed primarily SFA or MUFA for 12 weeks. You wouldn't realize this from the abstract however; you have to look very closely at the p-values in table 4.

One of the questions one could legitimately ask, however, is whether SFA have a different effect on people with metabolic syndrome. Maybe the inflammation and metabolic problems they already have make them more sensitive to the hypothetical damaging effects of SFA? That's the question the first study addressed, and it appears that SFA are not uniquely harmful to insulin signaling in those with metabolic syndrome on the timescale tested.

It also showed that the different diets did not alter the proportion of blood fats being burned in muscle, as opposed to being stored in fat tissue. The human body is a remarkably adaptable biological machine that can make the best of a variety of nutrient inputs, at least over the course of 12 weeks. Metabolic damage takes decades to accumulate, and in my opinion is more dependent on food quality than macronutrient composition. Once metabolic dysfunction is established, some people may benefit from carbohydrate restriction, however.

Friday, April 23, 2010

Have Seed Oils Caused a Multi-Generational Obesity Epidemic?

In 2006, Drs. Gerard Ailhaud and Philippe Guesnet hypothesized that industrial seed oils such as corn, soybean, safflower, sunflower and cottonseed oil are at least partially responsible for the current obesity epidemic (1). These oils were not a significant part of the human diet until very recently, yet they have been promoted due to their supposed ability to prevent cardiovascular disease. The Western world has been living a massive uncontrolled experiment ever since.

Linoleic acid is an omega-6 polyunsaturated fatty acid (PUFA) that makes up a large proportion of seed oils.
It's a very bioactive molecule, in part because it's the precursor of two classes of signaling molecules (eicosanoids and endocannabinoids), some of which influence the development of fat tissue and regulate appetite.

Dr. Ailhaud and his colleagues pointed out that not only are people eating far more linoleic acid than ever before; that very same linoleic acid is accumulating in our fat tissue and showing up in breast milk. Here are a few graphs to illustrate the point. The first graph is of PUFA consumption in the US over the last century, primarily reflecting seed oil intake (based on USDA food disappearance records):

Here's a graph of added fat intake based on USDA data. Added animal fats such as butter and lard have remained stable since 1970 (although total animal fat intake has declined), while seed oil consumption has gone from high to higher:

The following graph shows linoleic acid accumulation in human body fat over the last few decades in Western nations (mostly the US). I put this together based on two references (2, 3). I didn't find any data from the US past 1986. Linoleic acid, unlike most other fatty acids, accumulates disproportionately in body fat (4):

And finally, linoleic acid in the breast milk of US mothers, from Dr. Ailhaud's 2006 paper (the black dots):

In 2009, Dr. Ingeborg Hanbauer published a paper showing that when mice are fed a diet with a poor omega-6:3 balance (77:1), after three generations they develop adult obesity (5). Mice fed the same diet with a better omega-6:3 balance (9.5:1) did not develop obesity, and remained smaller overall. This shows that PUFA imbalance can cause multi-generational effects resulting in obesity and excessive tissue growth. Cmdr. Joseph Hibbeln, a collaborator of Dr. Bill Lands, was an author. The thing I don't like about this paper is they didn't quantify the obesity by measuring fat mass, so we have to take the authors' word that they had more fat.

This week, Dr. Florence Massiera and collaborators published a similar paper titled “A Western-like fat diet is sufficient to induce a gradual enhancement in fat mass over generations” (6). Drs. Ailhaud and Guesnet were both on this paper. They showed that a 35% fat diet with an omega-6:3 ratio of 28 caused obesity that progressively increased over four generations of mice. Although this study was more detailed than the study by Dr. Hanbauer and colleagues, it lacked a comparison group with a more favorable omega-6:3 balance to show that the obesity was specifically the result of omega-6:3 imbalance, rather than the fact that the diet was higher in fat overall or some other aspect of its composition.

Both studies have serious problems. Nevertheless, together they suggest that PUFA imbalance is capable of causing obesity in mice that worsens over several generations.

If this is true in humans, it would be a straightforward explanation for the obesity epidemic that has plagued the Western world in recent decades. It would explain why the epidemic began in children around 1970, but didn’t show up in adults until about 1980. It would explain why the epidemic is less severe in Europe, and even less so in Asia. And of course, it correlates well with trends in seed oil consumption. This graph is based on US NHANES survey data:

We already know that a number of prenatal factors can have an effect on adult body fat levels in rodents, and observational studies have suggested that the same may apply to humans. If a mother’s body fat is full of linoleic acid, she will pass it on to the fetus as it grows, and after birth in breast milk, influencing its development.

As long-time followers of Whole Health Source know, I suspect industrial seed oils contribute to many of our modern ills. I can’t say for sure that seed oils are responsible for the current obesity epidemic, but the evidence certainly gives me pause. In any case, seed oils are an unnatural part of the human diet and it won’t hurt anyone to avoid them. The half-life of linoleic acid in fat tissue is about two years, so reducing it is a long-term prospect.


Friday, April 9, 2010

Full-fat Dairy for Cardiovascular Health

I just saw a paper in the AJCN titled "Dairy consumption and patterns of mortality of
Australian adults
". It's a prospective study with a 15-year follow-up period. Here's a quote from the abstract:
There was no consistent and significant association between total dairy intake and total or cause-specific mortality. However, compared with those with the lowest intake of full-fat dairy, participants with the highest intake (median intake 339 g/day) had reduced death due to CVD (HR: 0.31; 95% confidence interval (CI): 0.12–0.79; P for trend = 0.04) after adjustment for calcium intake and other confounders. Intakes of low-fat dairy, specific dairy foods, calcium and vitamin D showed no consistent associations.
People who ate the most full-fat dairy had a 69% lower risk of cardiovascular death than those who ate the least. Otherwise stated, people who mostly avoided dairy or consumed low-fat dairy had more than three times the risk of dying of coronary heart disease or stroke than people who ate the most full-fat diary.

Contrary to popular belief, full-fat dairy, including milk, butter and cheese, has never been convincingly linked to cardiovascular disease. In fact, it has rather consistently been linked to a lower risk, particularly for stroke. What has been linked to cardiovascular disease is milk fat's replacement, margarine. In the Rotterdam study, high vitamin K2 intake was linked to a lower risk of fatal heart attack, aortic calcification and all-cause mortality. Most of the K2 came from full-fat cheese. In my opinion, artisanal cheese and butter made from pasture-fed milk are the ultimate dairy foods.

From a 2005 literature review on milk and cardiovascular disease in the EJCN:
In total, 10 studies were identified. Their results show a high degree of consistency in the reported risk for heart disease and stroke, all but one study suggesting a relative risk of less than one in subjects with the highest intakes of milk.

...the studies, taken together, suggest that milk drinking may be associated with a small but worthwhile reduction in heart disease and stroke risk.

...All the cohort studies in the present review had, however, been set up at times when reduced-fat milks were unavailable, or scarce.
The fat is where the vitamins A, K2, E and D are. The fat is where the medium-chain triglycerides, butyric acid and omega-3 fatty acids are. The fat is where the conjugated linoleic acid is. So the next time someone admonishes you to reduce your dairy fat intake, what are you going to tell them??

Tuesday, April 6, 2010

Copper and Cardiovascular Disease

In 1942, Dr. H. W. Bennetts dissected 21 cattle known to have died of "falling disease". This was the name given to the sudden, inexplicable death that struck herds of cattle in certain regions of Australia. Dr. Bennett believed the disease was linked to copper deficiency. He found that 19 of the 21 cattle had abnormal hearts, showing atrophy and abnormal connective tissue infiltration (fibrosis) of the heart muscle (1).

In 1963, Dr. W. F. Coulson and colleagues found that 22 of 33 experimental copper-deficient pigs died of cardiovascular disease. 11 of 33 died of coronary heart disease, the quintessential modern human cardiovascular disease. Pigs on a severely copper-deficient diet showed weakened and ruptured arteries (aneurysms), while moderately deficient pigs "survived with scarred vessels but demonstrated a tendency toward premature atherosclerosis" including foam cell accumulation (2). Also in 1963, Dr. C. R. Ball and colleagues published a paper describing blood clots in the heart and coronary arteries, heart muscle degeneration, ventricular calcification and early death in mice fed a lard-rich diet (3).

This is where Dr. Leslie M. Klevay enters the story. Dr. Klevay suspected that Ball's mice had suffered from copper deficiency, and decided to test the hypothesis. He replicated Ball's experiment to the letter, using the same strain of mice and the same diet. Like Ball, he observed abnormal clotting in the heart, degeneration and enlargement of the heart muscle, and early death. He also showed by electrocardiogram that the hearts of the copper-deficient mice were often contracting abnormally (arrhythmia).

But then the coup de grace: he prevented these symptoms by supplementing the drinking water of a second group of mice with copper (4). In the words of Dr. Klevay: "copper was an antidote to fat intoxication" (5). I believe this was his tongue-in-cheek way of saying that the symptoms had been misdiagnosed by Ball as due to dietary fat, when in fact they were due to a lack of copper.

Since this time, a number of papers have been published on the relationship between copper intake and cardiovascular disease in animals, including several showing that copper supplementation prevents atherosclerosis in one of the most commonly used animal models of cardiovascular disease (6, 7, 8). Copper supplementation also corrects abnormal heart enlargement-- called hypertrophic cardiomyopathy-- and heart failure due to high blood pressure in mice (9).

For more than three decades, Dr. Klevay has been a champion of the copper deficiency theory of cardiovascular disease. According to him, copper deficiency is the only single intervention that has caused the full spectrum of human cardiovascular disease in animals, including:
  • Heart attacks (myocardial infarction)
  • Blood clots in the coronary arteries and heart
  • Fibrous atherosclerosis including smooth muscle proliferation
  • Unstable blood vessel plaque
  • Foam cell accumulation and fatty streaks
  • Calcification of heart tissues
  • Aneurysms (ruptured vessels)
  • Abnormal electrocardiograms
  • High cholesterol
  • High blood pressure
If this theory is so important, why have most people never heard of it? I believe there are at least three reasons. The first is that the emergence of the copper deficiency theory coincided with the rise of the diet-heart hypothesis, whereby saturated fat causes heart attacks by raising blood cholesterol. Bolstered by some encouraging findings and zealous personalities, this theory took the Western medical world by storm, for decades dominating all other theories in the medical literature and public health efforts. My opinions on the diet-heart hypothesis aside, the two theories are not mutually exclusive.

The second reason you may not have heard of the theory is due to a lab assay called copper-mediated LDL oxidation. Researchers take LDL particles (from blood, the same ones the doctor measures as part of a cholesterol test) and expose them to a high concentration of copper in a test tube. Free copper ions are oxidants, and the researchers then measure the amount of time it takes the LDL to oxidize. I find this assay tiresome, because studies have shown that the amount of time it takes copper to oxidize LDL in a test tube doesn't predict how much oxidized LDL you'll actually find in the bloodstream of the person you took the LDL from (10, 11).

In other words, it's an assay that has little bearing on real life. But researchers like it because for some odd reason, feeding a person saturated fat causes their LDL to be oxidized more rapidly by copper in a test tube, even though that's not the case in the actual bloodstream (12). Guess which result got emphasized?

The fact that copper is such an efficient oxidant has led some researchers to propose that copper oxidizes LDL in human blood, and therefore dietary copper may contribute to heart disease (oxidized LDL is a central player in heart disease-- read more here). The problem with this theory is that there are virtually zero free copper ions in human serum. Then there's the fact that supplementing humans with copper actually reduces the susceptibility of red blood cells to oxidation (by copper in a test tube, unfortunately), which is difficult to reconcile with the idea that dietary copper increases oxidative stress in the blood (13).

The third reason you may never have heard of the theory is more problematic. Several studies have found that a higher level copper in the blood correlates with a higher risk of heart attack (14, 15). At this point, I could hang up my hat, and declare the animal experiments irrelevant to humans. But let's dig deeper.

Nutrient status is sometimes a slippery thing to measure. As it turns out, serum copper isn't a good marker of copper status. In a 4-month trial of copper depletion in humans, blood copper stayed stable, while the activity of copper-dependent enzymes in the blood declined (16). These include the important copper-dependent antioxidant, superoxide dismutase. As a side note, lysyl oxidase is another copper-dependent enzyme that cross-links the important structural proteins collagen and elastin in the artery wall, potentially explaining some of the vascular consequences of copper deficiency. Clotting factor VIII increased dramatically during copper depletion, perhaps predicting an increased tendency to clot. Even more troubling, three of the 12 women developed heart problems during the trial, which the authors felt was unusual:
We observed a significant increase over control values in the number of ventricular premature discharges (VPDs) in three women after 21, 63, and 91 d of consuming the low-copper diet; one was subsequently diagnosed as having a second-degree heart block.
In another human copper restriction trial, 11 weeks of modest copper restriction coincided with heart trouble in 4 out of 23 subjects, including one heart attack (17):
In the history of conducting numerous human studies at the Beltsville Human Nutrition Research Center involving participation by 337 subjects, there had previously been no instances of any health problem related to heart function. During the 11 wk of the present study in which the copper density of the diets fed the subjects was reduced from the pretest level of 0.57 mg/ 1000 kcal to 0.36 mg/1000 kcal, 4 out of 23 subjects were diagnosed as having heart-related abnormalities.
The other reason to be skeptical of the association between blood copper and heart attack risk is that inflammation increases copper in the blood (18, 19). Blood copper level correlates strongly with the marker of inflammation C-reactive protein (CRP) in humans, yet substantially increasing copper intake doesn't increase CRP (20, 21). This suggests that elevated blood copper is likely a symptom of inflammation, rather than its cause, and presents an explanation for the association between blood copper level and heart attack risk.

Only a few studies have looked at the relationship between more accurate markers of copper status and cardiovascular disease in humans. Leukocyte copper status, a marker of tissue status, is lower in people with cardiovascular disease (22, 23). People who die of heart attacks generally have less copper in their hearts than people who die of other causes, although this could be an effect rather than a cause of the heart attack (24). Overall, I find the human data lacking. I'd like to see more studies examining liver copper status in relation to cardiovascular disease, as the liver is the main storage organ for copper.

According to a 2001 study, the majority of Americans may have copper intakes below the USDA recommended daily allowance (25), many substantially so. This problem is exacerbated by the fact that copper levels in food have declined in industrial nations over the course of the 20th century, something I'll discuss in the next post.

Tuesday, March 23, 2010

New Review of Controlled Trials Replacing Saturated fat with Industrial Seed Oils

Readers Stanley and JBG just informed me of a new review paper by Dr. Dariush Mozaffarian and colleagues. Dr. Mozaffarian is one of the Harvard epidemiologists responsible for the Nurse's Health study. The authors claim that overall, the controlled trials show that replacing saturated fat with polyunsaturated fat from industrial seed oils, but not carbohydrate or monounsaturated fat (as in olive oil), slightly reduces the risk of having a heart attack:
These findings provide evidence that consuming PUFA in place of SFA reduces CHD events in RCTs [how do you like the acronyms?]. This suggests that rather than trying to lower PUFA consumption, a shift toward greater population PUFA consumption in place of SFA would significantly reduce rates of CHD.
Looking at the studies they included in their analysis (and at those they excluded), it looks like they did a very nice job cherry picking. For example:
  • They included the Finnish Mental Hospital trial, which is a terrible trial for a number of reasons. It wasn't randomized, appropriately controlled or even semi-blinded*. Thus, it doesn't fit the authors' stated inclusion criteria, but they included it in their analysis anyway**. Besides, the magnitude of the result has never been replicated by better trials, not even close.
  • They included two trials that changed more than just the proportion of SFA to PUFA. For example, the Oslo Diet-heart trial replaced animal fat with seed oils, but also increased fruit, nut, vegetable and fish intake, while reducing trans fat margarine intake! The STARS trial increased both omega-6 and omega-3, reduced processed food intake, and increased fruit and vegetable intake! These obviously aren't controlled trials isolating the issue of dietary fat substitution. If you subtract the four inappropriate trials from their analysis, which is half the studies they analyzed, the result disappears. Those four just happened to show the largest reduction in heart attack mortality...
  • They excluded the Rose et al. corn oil trial and the Sydney Diet-heart trial. Both found a large increase in total mortality from replacing animal fat with seed oils, and the Rose trial found a large increase in heart attack deaths (the Sydney trial didn't report CHD deaths, but Dr. Mozaffarian et al. stated in their paper that they contacted authors to obtain unpublished results. Why didn't they contact the authors of this study?).
The authors claim, based on their analysis, that replacing 5% of calories as saturated fat with polyunsaturated fat would reduce the risk of having a heart attack by 10%. Take a minute to think about the implications of that statement. For the average American, that means cutting saturated fat nearly in half to 6% of energy, which is a real challenge if you want to have a semblance of a normal diet. It also means nearly doubling PUFA intake, which will come mostly from seed oils if you follow the authors' advice.

So basically, even if the authors' conclusion were correct, you overhaul your whole diet and replace natural foods with bland unnatural foods, and...? You reduce your 10-year risk of having a heart attack from 10 percent to 9 percent. Without affecting your overall risk of dying! The paper states that the interventions didn't affect overall mortality at all. That's what they're talking about here. Sign me up!


* Autopsies were not conducted in a blinded manner. Physicians knew which hospital the cadavers came from, because autopsies were done on-site. There is some confusion about this point because the second paper states that physicians interpreted the autopsy reports in a blinded manner. But that doesn't make it blinded, since the autopsies weren't blinded. The patients were also not blinded, so the study overall was highly susceptible to bias.

** They refer to it as "cluster randomized". I don't know if that term accurately applies to the Finnish trial or not. The investigators definitely didn't randomize the individual patients: whichever hospital a person was being treated in, that's the food he/she ate. There were only two hospitals, so "cluster randomization" in this case would just refer to deciding which hospital got the intervention first. Can this accurately be called randomized?

Saturday, March 20, 2010

Fatty Liver: It's not Just for Grown-ups Anymore

The epidemic of non-alcoholic fatty liver disease (NAFLD) is one of my favorite topics on this blog, due to the liver's role as the body's metabolic "grand central station", as Dr. Philip Wood puts it. The liver plays a critical part in the regulation of sugar, insulin, and lipid levels in the blood. Many of the routine blood tests administered in the doctor's office (blood glucose, cholesterol, etc.) partially reflect liver function.

NAFLD is an excessive accumulation of fat in the liver that impairs its function and can lead to severe liver inflammation (NASH), and in a small percentage of people, liver cancer. An estimated 20-30% of people in industrial nations suffer from NAFLD, a shockingly high prevalence (1).

I previously posted on dietary factors I believe are involved in NAFLD. In rodents, feeding a large amount of sugar or industrial seed oils (corn oil, etc.) promotes NAFLD, whereas fats such as butter and coconut oil do not (2). In human infants, enteric feeding with industrial seed oils causes severe liver damage, whereas the same amount of fat from fish oil doesn't, and can even reverse the damage done by seed oils (3).

So basically, I think sugar and industrial oils are major contributors to NAFLD, and if you look at diet trends in the US over the last 40 years, they're consistent with the idea. Industrial oils are harmful due (at least in part) to their high omega-6 content, which is problematic partially because it disturbs normal omega-3 metabolism. A potential solution to fatty liver is to reduce sugar, replace industrial oils with natural fats, and ensure a regular source of omega-3. I've posted two anecdotes of people rapidly healing their fatty livers using diet changes* (4, 5).

I recently came across a study that examined the diet of Canadian children with NAFLD (6). The children had a high sugar intake, a typical (i.e., high) omega-6 intake, and a low omega-3 intake. The authors claimed that the children also had a high saturated fat intake, but at 10.5% of calories, they were almost eating to the American Heart Association's "Step I" diet recommendations**. Busted! Total fat intake was also low.

High sugar consumption was associated with a larger waist circumference, insulin resistance, lower adiponectin and elevated markers of inflammation. High omega-6 intake was associated with markers of inflammation. Low omega-3 intake was associated with insulin resistance and elevated liver enzymes. Saturated fat intake presumably had no relation to any of these markers, since they didn't mention it in the text.

These children with NAFLD, who were all insulin resistant and mostly obese, had diets high in omega-6, high in sugar, and low in omega-3. This is consistent with the idea that these three factors, which have all been moving in the wrong direction in the last 40 years, contribute to NAFLD.


* Fatty liver was assessed by liver enzymes, admittedly not a perfect test. However, elevated liver enzymes do correlate fairly well with NAFLD.

** Steps I and II were replaced by new diet advice in 2000. The AHA now recommends keeping saturated fat below 7% of calories. Stock up on those skinless chicken breasts! Make sure there isn't any residual fat sticking to the meat, it might kill you. I do have to give the AHA credit however, because their new recommendations focus mostly on eating real food rather than avoiding saturated fat and cholesterol.

Thursday, February 25, 2010

Corn Oil and Cancer: Reality Strikes Again

The benefits of corn oil keep rolling in. In a new study by Stephen Freedland's group at Duke, feeding mice a diet rich in butter and lard didn't promote the growth of transplanted human prostate cancer cells any more than a low-fat diet (1).

Why do we care? Because other studies, including one from the same investigators, show that corn oil and other industrial seed oils strongly promote prostate cancer cell growth and increase mortality in similar models (2, 3).

From the discussion section:
Current results combined with our prior results suggest that lowering the fat content of a primarily saturated fat diet offers little survival benefit in an intact or castrated LAPC-4 xenograft model. In contrast to the findings when omega-6 fats are used, these results raise the possibility that fat type may be as important as fat amount or perhaps even more important.
The authors seem somewhat surprised and pained by the result. Kudos for publishing it. However, there's nothing to be surprised about. There's a large body of evidence implicating excess omega-6 fat in a number of cancer models. Reducing omega-6 to below 4% of calories has a dramatic effect on cancer incidence and progression*. In fact, there have even been several experiments showing that butter and other animal fats promote cancer growth to a lesser degree than margarine and omega-6-rich seed oils. I discussed that here.

I do have one gripe with the study. They refer to the diet as "saturated fat based". That's inaccurate terminology. I see it constantly in the diet-health literature. If it were coconut oil, then maybe I could excuse it, because coconut fat is 93% saturated. But this diet was made of lard and butter, the combination of which is probably about half saturated. The term "animal fat" or "low-omega-6 fat" would have been more accurate. At least they listed the diet composition. Many studies don't even bother, leaving it to the reader to decide what they mean by "saturated fat".


* The average American eats 7-8% omega-6 by calories. This means it will be difficult to see a relationship between omega-6 intake and cancer (or heart disease, or most things) in observational studies in the US or other industrial nations, because we virtually all eat more than 4% of calories as omega-6. Until the 20th century, omega-6 intake was below 4%, and usually closer to 2%, in most traditional societies. That's where it remains in contemporary traditional societies unaffected by industrial food habits, such as Kitava. Our current omega-6 intake is outside the evolutionary norm.